山电话

Leica UAV brings efficiency to volume calculation

KlöntalerSee坐落在海拔848米的海平面,早在1655年,苏黎世艺术家Conrad Meyer才能吸引第一个现代的高山全景。该湖面由岩石滑坡(Rockslide)久久以前创建,并由2900毫米高的山地massifglärnisch创建,这对于游客和艺术家而令人叹为观止,这仍然是令人叹为观止的美丽。但是,诗人和画家不仅认识到3.3平方公里的大范围的潜力,这是由周围的山脉布鲁克斯(Klön)等周围的山布鲁克(Klön)喂养的。1908年,klöntalersee在罗丹伯格和萨克伯格之间的东边扣押了一个土墩,为周围的村庄和公司发电。

由于新的220米长和21.5米高的地球大坝,该湖泊可携带约3980万立方米的水,如果需求波动和高峰时段,则可以用来发电。

From air to water

Ingenieurteam Geo GmbH凭借其开创性的方法结合了水文和摄影测量法,计划通过使用其声音船,测量师,Leica Geosystems工业无人驾驶飞机(UAV)以及最新的定位技术来调查该区域瑞士(Leica Geosystems)在瑞士广州格拉鲁斯(Glarus)的广州。目标是生成3D模型,以精确和英寸的精确计算和对实际保持能力的模拟。

在采取了所有准备措施之后,批准过程和计划已经完成,来自卡尔斯鲁希的专家带着他们的声纳船只到达220公里以上的湖泊进入瑞士阿尔卑斯山,以常规的水表绘制湖泊的污染状况。在瑞士国家坐标系统LV03中记录了船只和Leica Geosystems无人机所做的所有测量。

这艘6米长的船只启动了172条计划的录音线,使用其Reson Seabat 8​​101 Multibeam Echosounder启动了湖泊土壤的详细图片。跟踪计以150度的角度发射声学信号,并通过测量回声的经过的时间来计算水的深度。在每秒的101梁时,以每秒30个ping的频率为频率,水平图接收床的高精度数据,刺激性为3,030个单点。专家们在每次测量轨道的三分之一重叠时,确保在测量过程中实现少于10厘米的精度。

But before data can be gathered, the measuring system must be calibrated precisely in order to avoid disturbance factors and to correctly determine the results. Therefore, the sensor technology must be adjusted before every deployment to subtract both linear movements of the vessel as well as rotation around its axles to impede any falsification. A further step for the hydrographs to get a clear and detailed view of the lakes ground is to factor the waters sound velocity into the calculation, which changes depending on temperature and suspended particles and becomes especially important in lentic water.

After the boat got launched and calibrated, the crew put out to sea on a two-and-a-half hour long first cruise to get a first impression of the lake’s character and began to create the first sonar data of the soil. Following the planned routes and under consideration of the lake’s depth and texture, the highly skilled hydrographs on the Surveyor collected enough information to create a point cloud of 134.837.653 X-Y-Z-coordinates. All in all, the crew of the observation boat made it in five days to record all 2,855,204 square meters of the Klöntalersee.

Surveying vessel on the Kloentalersee

Beyond limits

不仅快速变化的天气状况和骨气冷的冷,将人和机器推向了极限,随着冰川的massifglärnisch构建了南部路堤的建筑,环境还对技术进行了测试。Massif凭借其2,900 m的身份,实际上将其阴影投向了。通过地块陡峭的斜坡,距离河滨附近,专家担心,由于Klöntalersee的南侧信号不透明度,他们可能会失去GPS流。在这种情况下,将船只位置的确定是由放置在湖北部和东海岸的转速仪进行的。由于湖泊的长期肾脏形状,这将导致严重的问题,以获取船位的准确细节。

Aibot X6 UAV surveying the Kloentalersee

通过在测量师上使用Leica viva GS 16 GNSS天线,可以将具有多层声纳记录的数据分配给其坐标。凭借其内置的SmartLink技术,即使GSM网络的信号丢失了,机组人员仍然能够记录高精度数据并接收GNSS校正数据。多亏了550个频道,最先进的测量引擎和超现代RTK算法,无人机和船只的数据都可以精确地分配给测试结果。

由于它们的一般设计,很难为配备多光束的船只捕获银行情况。除此之外,损坏敏感且昂贵的传感器的风险在浅水中迅速上升,并且在海岸的附近。为了获得数量计算和仿真的精确结果,工程师依靠他们在无人机的经验,并决定通过摄影测量法捕获空气寄宿的海岸和路堤。

Klöntalersee南部的不可通行的外套

天空的精度

在从船上定期测量湖泊后,工程师开始计划Leica Geosystems无人机解决方案的航班。为了捕获与船的测量值重叠的海岸地区,至关重要的是,在较低的水位上计划以下飞机。在季节性降低了KlöntalerSee的水平之后,对Leica Geosystems Hexacopter进行了调查。

为此,ING的专家。Geo的专家计划使用内部建造的飞行计划软件,为以下航班设置航路点,并确定适合调查的参数,例如高度,地面采样距离(GSD),数据速度和数据重叠。为了尽可能准确地记录银行区域的倾斜和陡峭的地形,专家决定多次调查每个区域以提高数据的有效性。PC上的飞行计划完成并将航路点加载到UAVS内部存储空间后,使用Viva GS16测量了湖泊周围的地面控制点(GCP),因此可以开始首次飞行。

再次,对高山水库的测量提出了自己对人和机器的挑战。除了平均温度低于0度的摄氏摄氏度外,迅速的天气变化和低云,Klöntalersee的南岸再次倾斜了山墙,这是最大的挑战。由于陡峭的墙壁和海岸茂密的植被使飞行员不可能从土地上行动,因此必须启动并降落在单独的船上。除了敏感和可靠的技术外,飞行员的技能和稳定之手也尤为重要。

尽管有不利的条件,但来自卡尔斯鲁赫(Karlsruhe)的团队还是能够在18次飞行中收集高度精确的数据,因此在两天内覆盖了总长度超过12公里的干岸条。每两秒钟拍摄一次图片,而无人机则以4 m/s的速度移动,专家们确保了数据的录制,该数据的准确度最高,而相机附加到飞行多传感器平台上。

“Due to the fast data availability of the UAV, we were able to evaluate the first results on site,” said Benjamin Busse, IngenieurTeam GEO.

将技术与准确性相结合

As with the recordings of the surveying boat, it was of immanent importance for the UAV-based results to accurately reference them. For this purpose, the experts of the Ingenieurteam GEO equipped the UAV with an special RTK / GNSS module and used in addition the Viva GS16 GNSS antenna, which was the perfect match to work under these difficult conditions to achieve an accuracy of 1-3 cm in georeferencing the collected data.

AIBOT X6 UAV从西方调查Kloentalersee的视图

毕竟发生了测量,调查ing experts began to process the obtained data. The point clouds created by the multibeam sonar had to be fed into the PDS 2000 bearing software to manually edit and correct them from imprecision. In order integrate the data of the river banks into the volume calculation, all 4,400 high-resolution images created with the UAV had to be imported into flight planning software, where they were merged with the coordinates from the UAV’s log file. After that, the georeferenced data was edited in the post processing software AgiSoft PhotoScan Pro to create a 3D model as well as a point cloud. Subsequently, the two 3D models were combined in the Autodesk application AutoCAD® Civil 3D to generate an exact model of the lake's situation.

Using the data from the 3D model, the engineers generated a precise map with elevation lines for their client. By being able to generate such a precise result and to combine two completely different ways of surveying large and challenging areas, the engineers stood up to the game and used the most modern technology to get the job done. With the data generated by boat and UAV, the experts are able to fulfill their clients’ wishes of a detailed virtual 3D model and a metres long situation plan with contour lines printed out.

Busse说:“我们现代多冰系统和利卡E地质系统无人机的测量结果的组合使我们能够很快生成高精度数据。”

Leica Geosystems再次选择飞行多感官平台来重新考虑传统的工作方式,是专业人士取得最佳成果的正确选择。

联系Leica Geosystems?

找到您的Leica Geosystems联系,以获得销售,支持和技术服务。
找到您的Leica Geosystems联系,以获得销售,支持和技术服务。